Basic Concepts and Facts Based on Chapter 2 of The IMO Compendium

The following is a list of the most basic concepts and theorems frequently used in this book. We encourage the reader to become familiar with them and perhaps read up on them further in other literature.

Algebra

Polynomials

Theorem. The quadratic equation $a x^{2}+b x+c=0(a, b, c \in \mathbb{R}, a \neq 0)$ has solutions

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The discriminant D of the quadratic equation is defined as $D=b^{2}-4 a c$. For $D<0$ the solutions are complex and conjugate to each other, for $D=0$ the solutions degenerate to one real solution, and for $D>0$ the equation has two distinct real solutions.

Definition. Binomial coefficients $\binom{n}{k}, n, k \in \mathbb{N}_{0}, k \leq n$, are defined as

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!} .
$$

They satisfy $\binom{n}{i}+\binom{n}{i-1}=\binom{n+1}{i}$ for $i>0$ and also $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$, $\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{n}\binom{n}{n}=0,\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}$.
Theorem. [(Newton's) binomial formula] For $x, y \in \mathbb{C}$ and $n \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

Theorem. [Bézout's theorem] A polynomial $P(x)$ is divisible by the binomial $x-a(a \in \mathbb{C})$ if and only if $P(a)=0$.

Theorem. [The rational root theorem] If $x=p / q$ is a rational zero of a polynomial $P(x)=a_{n} x^{n}+\cdots+a_{0}$ with integer coefficients and $(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$.

Theorem. [The fundamental theorem of algebra] Every nonconstant polynomial with coefficients in \mathbb{C} has a complex root.

Theorem. [Eisenstein's criterion (extended)] Let $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. If there exist a prime p and an integer $k \in\{0,1, \ldots, n-1\}$ such that $p \mid a_{0}, a_{1}, \ldots, a_{k}, p \nmid a_{k+1}$, and $p^{2} \nmid a_{0}$, then there exists an irreducible factor $Q(x)$ of $P(x)$ whose degree is at least k. In particular, if p can be chosen such that $k=n-1$, then $P(x)$ is irreducible.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Definition. Symmetric polynomials in x_{1}, \ldots, x_{n} are polynomials that do not change on permuting the variables x_{1}, \ldots, x_{n}. Elementary symmetric polynomials are $\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i_{1}} \cdots x_{i_{k}}$ (the sum is over all k-element subsets $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\left.\{1,2, \ldots, n\}\right)$.
Theorem. Every symmetric polynomial in x_{1}, \ldots, x_{n} can be expressed as a polynomial in the elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$.

Theorem. [Vieta's formulas] Let $\alpha_{1}, \ldots, \alpha_{n}$ and c_{1}, \ldots, c_{n} be complex numbers such that

$$
\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n} .
$$

Then $c_{k}=(-1)^{k} \sigma_{k}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for $k=1,2, \ldots, n$.
Theorem. [Newton's formulas on symmetric polynomials] Let

$$
\sigma_{k}=\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)
$$

and let $s_{k}=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$, where x_{1}, \ldots, x_{n} are arbitrary complex numbers. Then

$$
k \sigma_{k}=s_{1} \sigma_{k-1}-s_{2} \sigma_{k-2}+\cdots+(-1)^{k} s_{k-1} \sigma_{1}+(-1)^{k-1} s_{k} .
$$

Recurrence Relations

Definition. A recurrence relation is a relation that determines the elements of a sequence $x_{n}, n \in \mathbb{N}_{0}$, as a function of previous elements. A recurrence relation of the form

$$
(\forall n \geq k) \quad x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k}=0
$$

for constants a_{1}, \ldots, a_{k} is called a linear homogeneous recurrence relation of order k. We define the characteristic polynomial of the relation as $P(x)=$ $x^{k}+a_{1} x^{k-1}+\cdots+a_{k}$.

Theorem. Using the notation introduced in the above definition, let $P(x)$ factorize as $P(x)=\left(x-\alpha_{1}\right)^{k_{1}}\left(x-\alpha_{2}\right)^{k_{2}} \cdots\left(x-\alpha_{r}\right)^{k_{r}}$, where $\alpha_{1}, \ldots, \alpha_{r}$ are distinct complex numbers and k_{1}, \ldots, k_{r} are positive integers. The general solution of this recurrence relation is in this case given by

$$
x_{n}=p_{1}(n) \alpha_{1}^{n}+p_{2}(n) \alpha_{2}^{n}+\cdots+p_{r}(n) \alpha_{r}^{n},
$$

where p_{i} is a polynomial of degree less than k_{i}. In particular, if $P(x)$ has k distinct roots, then all p_{i} are constant.

If x_{0}, \ldots, x_{k-1} are set, then the coefficients of the polynomials are uniquely determined.

Inequalities

Theorem. The quadratic function is always positive; i.e., $(\forall x \in \mathbb{R}) x^{2} \geq 0$. By substituting different expressions for x, many of the inequalities below are obtained.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Theorem. [Bernoulli's inequalities]

1. If $n \geq 1$ is an integer and $x>-1$ a real number then $(1+x)^{n} \geq 1+n x$.
2. If $a>1$ or $a<0$ then for $x>-1$ the following inequality holds: $(1+x)^{\alpha} \geq$ $1+\alpha x$.
3. If $a \in(0,1)$ then for $x>-1$ the following inequality holds: $(1+x)^{\alpha} \leq$ $1+\alpha x$.

Theorem. [The mean inequalities] For positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ it follows that $Q M \geq A M \geq G M \geq H M$, where

$$
\begin{aligned}
Q M & =\sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}}, \\
G M & =\sqrt[n]{x_{1} \cdots x_{n}},
\end{aligned} \quad H M=\frac{x_{1}+\cdots+x_{n}}{n}, \quad \frac{n}{1 / x_{1}+\cdots+1 / x_{n}} .
$$

Each of these inequalities becomes an equality if and only if $x_{1}=x_{2}=\cdots=x_{n}$. The numbers $Q M, A M, G M$, and $H M$ are respectively called the quadratic mean, the arithmetic mean, the geometric mean, and the harmonic mean of $x_{1}, x_{2}, \ldots, x_{n}$.
Theorem. [The general mean inequality] Let x_{1}, \ldots, x_{n} be positive real numbers. For each $p \in \mathbb{R}$ we define the mean of order p of x_{1}, \ldots, x_{n} by $M_{p}=\left(\frac{x_{1}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p}$ for $p \neq 0$, and $M_{q}=\lim _{p \rightarrow q} M_{p}$ for $q \in\{ \pm \infty, 0\}$. In particular, $\max x_{i}, Q M, A M, G M, H M$, and $\min x_{i}$ are $M_{\infty}, M_{2}, M_{1}, M_{0}$, M_{-1}, and $M_{-\infty}$ respectively. Then

$$
M_{p} \leq M_{q} \quad \text { whenever } \quad p \leq q .
$$

Theorem. [Cauchy-Schwarz inequality] Let $a_{i}, b_{i}, i=1,2, \ldots, n$, be real numbers. Then

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Equality occurs if and only if there exists $c \in \mathbb{R}$ such that $b_{i}=c a_{i}$ for $i=$ $1, \ldots, n$.

Theorem. [Hölder's inequality] Let $a_{i}, b_{i}, i=1,2, \ldots, n$, be nonnegative real numbers, and let p, q be positive real numbers such that $1 / p+1 / q=1$. Then

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1 / q}
$$

Equality occurs if and only if there exists $c \in \mathbb{R}$ such that $b_{i}=c a_{i}$ for $i=$ $1, \ldots, n$. The Cauchy-Schwarz inequality is a special case of Hölder's inequality for $p=q=2$.

Theorem. [Minkowski's inequality] Let $a_{i}, b_{i}(i=1,2, \ldots, n)$ be nonnegative real numbers and p any real number not smaller than 1 . Then

$$
\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} b_{i}^{p}\right)^{1 / p} .
$$

For $p>1$ equality occurs if and only if there exists $c \in \mathbb{R}$ such that $b_{i}=c a_{i}$ for $i=1, \ldots, n$. For $p=1$ equality occurs in all cases.

Theorem. [Chebyshev's inequality] Let $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq$ b_{n} be real numbers. Then

$$
n \sum_{i=1}^{n} a_{i} b_{i} \geq\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} b_{i}\right) \geq n \sum_{i=1}^{n} a_{i} b_{n+1-i} .
$$

The two inequalities become equalities at the same time when $a_{1}=a_{2}=\cdots=$ a_{n} or $b_{1}=b_{2}=\cdots=b_{n}$.
Definition. A real function f defined on an interval I is convex if $f(\alpha x+\beta y) \leq$ $\alpha f(x)+\beta f(y)$. for all $x, y \in I$ and all $\alpha, \beta>0$ such that $\alpha+\beta=1$. A function f is said to be concave if the opposite inequality holds, i.e., if $-f$ is convex.
Theorem. If f is continuous on an interval I, then f is convex on that interval if and only if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \quad \text { for all } x, y \in I
$$

Theorem. If f is differentiable, then it is convex if and only if the derivative f^{\prime} is nondecreasing. Similarly, differentiable function f is concave if and only if f^{\prime} is nonincreasing.
Theorem. [Jensen's inequality] If $f: I \rightarrow \mathbb{R}$ is a convex function, then the inequality

$$
f\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right) \leq \alpha_{1} f\left(x_{1}\right)+\cdots+\alpha_{n} f\left(x_{n}\right)
$$

holds for all $\alpha_{i} \geq 0, \alpha_{1}+\cdots+\alpha_{n}=1$, and $x_{i} \in I$. For a concave function the opposite inequality holds.

Theorem. [Muirhead's inequality] Given $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{+}$and an n-tuple $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right)$ of positive real numbers, we define

$$
T_{\mathbf{a}}\left(x_{1}, \ldots, x_{n}\right)=\sum y_{1}^{a_{1}} \ldots y_{n}^{a_{n}}
$$

the sum being taken over all permutations y_{1}, \ldots, y_{n} of x_{1}, \ldots, x_{n}. We say that an n-tuple a majorizes an n-tuple \mathbf{b} if $a_{1}+\cdots+a_{n}=b_{1}+\cdots+b_{n}$ and $a_{1}+\cdots+a_{k} \geq b_{1}+\cdots+b_{k}$ for each $k=1, \ldots, n-1$. If a nonincreasing n-tuple a majorizes a nonincreasing n-tuple \mathbf{b}, then the following inequality holds:

$$
T_{\mathbf{a}}\left(x_{1}, \ldots, x_{n}\right) \geq T_{\mathbf{b}}\left(x_{1}, \ldots, x_{n}\right)
$$

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Equality occurs if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
Theorem. [Schur's inequality] Using the notation introduced for Muirhead's inequality,

$$
T_{\lambda+2 \mu, 0,0}\left(x_{1}, x_{2}, x_{3}\right)+T_{\lambda, \mu, \mu}\left(x_{1}, x_{2}, x_{3}\right) \geq 2 T_{\lambda+\mu, \mu, 0}\left(x_{1}, x_{2}, x_{3}\right)
$$

where $\lambda, \mu \in \mathbb{R}^{+}$. Equality occurs if and only if $x_{1}=x_{2}=x_{3}$ or $x_{1}=x_{2}, x_{3}=0$ (and in analogous cases).

Groups and Fields
Definition. A group is a nonempty set G equipped with an operation * satisfying the following conditions:
(i) $a *(b * c)=(a * b) * c$ for all $a, b, c \in G$.
(ii) There exists a (unique) additive identity $e \in G$ such that $e * a=a * e=a$ for all $a \in G$.
(iii) For each $a \in G$ there exists a (unique) additive inverse $a^{-1}=b \in G$ such that $a * b=b * a=e$.

If $n \in \mathbb{Z}$, we define a^{n} as $a * a * \cdots * a\left(n\right.$ times) if $n \geq 0$, and as $\left(a^{-1}\right)^{-n}$ otherwise.

Definition. A group $\mathcal{G}=(G, *)$ is commutative or abelian if $a * b=b * a$ for all $a, b \in G$.
Definition. A set A generates a group $(G, *)$ if every element of G can be obtained using powers of the elements of A and the operation $*$. In other words, if A is the generator of a group G then every element $g \in G$ can be written as $a_{1}^{i_{1}} * \cdots * a_{n}^{i_{n}}$, where $a_{j} \in A$ and $i_{j} \in \mathbb{Z}$ for every $j=1,2, \ldots, n$.
Definition. The order of $a \in G$ is the smallest $n \in \mathbb{N}$ such that $a^{n}=e$, if it exists. The order of a group is the number of its elements, if it is finite. Each element of a finite group has a finite order.

Theorem. [Lagrange's theorem] In a finite group, the order of an element divides the order of the group.
Definition. A ring is a nonempty set R equipped with two operations + and . such that $(R,+)$ is an abelian group and for any $a, b, c \in R$,
(i) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$;
(ii) $(a+b) \cdot c=a \cdot c+b \cdot c$ and $c \cdot(a+b)=c \cdot a+c \cdot b$.

A ring is commutative if $a \cdot b=b \cdot a$ for any $a, b \in R$ and with identity if there exists a multiplicative identity $i \in R$ such that $i \cdot a=a \cdot i=a$ for all $a \in R$.

Definition. A field is a commutative ring with identity in which every element a other than the additive identity has a multiplicative inverse a^{-1} such that $a \cdot a^{-1}=a^{-1} \cdot a=i$.

Theorem. The following are common examples of groups, rings, and fields:

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Groups: $\left(\mathbb{Z}_{n},+\right),\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{R} \backslash\{0\}, \cdot)$.
Rings: $\left(\mathbb{Z}_{n},+, \cdot\right),(\mathbb{Z},+, \cdot),(\mathbb{Z}[x],+, \cdot),(\mathbb{R}[x],+, \cdot)$.
Fields: $\left(\mathbb{Z}_{p},+, \cdot\right),(\mathbb{Q},+, \cdot),(\mathbb{Q}(\sqrt{2}),+, \cdot),(\mathbb{R},+, \cdot),(\mathbb{C},+, \cdot)$.

Analysis

Definition. A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has a limit $a=\lim _{n \rightarrow \infty} a_{n}$ (also denoted by $\left.a_{n} \rightarrow a\right)$ if

$$
(\forall \varepsilon>0)\left(\exists n_{\varepsilon} \in \mathbb{N}\right)\left(\forall n \geq n_{\varepsilon}\right)\left|a_{n}-a\right|<\varepsilon .
$$

A function $f:(a, b) \rightarrow \mathbb{R}$ has a limit $y=\lim _{x \rightarrow c} f(x)$ if

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x \in(a, b)) 0<|x-c|<\delta \Rightarrow|f(x)-y|<\varepsilon .
$$

Definition. A sequence x_{n} converges to $x \in \mathbb{R}$ if $\lim _{n \rightarrow \infty} x_{n}=x$. A series $\sum_{n=1}^{\infty} x_{n}$ converges to $s \in \mathbb{R}$ if and only if $\lim _{m \rightarrow \infty} \sum_{n=1}^{m} x_{n}=s$. A sequence or series that does not converge is said to diverge.

Theorem. A sequence a_{n} is convergent if it is monotonic and bounded.
Definition. A function f is continuous on $[a, b]$ if for every $x_{0} \in[a, b]$, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
Definition. A function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at a point $x_{0} \in(a, b)$ if the following limit exists:

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

A function is differentiable on (a, b) if it is differentiable at every $x_{0} \in(a, b)$. The function f^{\prime} is called the derivative of f. We similarly define the second derivative $f^{\prime \prime}$ as the derivative of f^{\prime}, and so on.

Theorem. A differentiable function is also continuous. If f and g are differentiable, then $f g, \alpha f+\beta g(\alpha, \beta \in \mathbb{R}), f \circ g, 1 / f$ (if $f \neq 0$), f^{-1} (if well-defined) are also differentiable. It holds that $(\alpha f+\beta g)^{\prime}=\alpha f^{\prime}+\beta g^{\prime}$, $(f g)^{\prime}=f^{\prime} g+f g^{\prime},(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) \cdot g^{\prime},(1 / f)^{\prime}=-f^{\prime} / f^{2},(f / g)^{\prime}=\left(f^{\prime} g-f g^{\prime}\right) / g^{2}$, $\left(f^{-1}\right)^{\prime}=1 /\left(f^{\prime} \circ f^{-1}\right)$.

Theorem. The following are derivatives of some elementary functions (a denotes a real constant): $\left(x^{a}\right)^{\prime}=a x^{a-1},(\ln x)^{\prime}=1 / x,\left(a^{x}\right)^{\prime}=a^{x} \ln a,(\sin x)^{\prime}=\cos x$, $(\cos x)^{\prime}=-\sin x$.

Theorem. [Fermat's theorem] Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. The function f attains its maximum and minimum in this interval. If $x_{0} \in(a, b)$ is an extremum (i.e., a maximum or minimum), then $f^{\prime}\left(x_{0}\right)=0$.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Theorem. [Rolle's theorem] Let $f(x)$ be a continuously differentiable function defined on $[a, b]$, where $a, b \in \mathbb{R}, a<b$, and $f(a)=f(b)=0$. Then there exists $c \in[a, b]$ such that $f^{\prime}(c)=0$.

Definition. Differentiable functions $f_{1}, f_{2}, \ldots, f_{k}$ defined on an open subset D of \mathbb{R}^{n} are independent if there is no nonzero differentiable function $F: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $F\left(f_{1}, \ldots, f_{k}\right)$ is identically zero on some open subset of D.

Theorem. Functions $f_{1}, \ldots, f_{k}: D \rightarrow \mathbb{R}$ are independent if and only if the $k \times n$ matrix $\left[\partial f_{i} / \partial x_{j}\right]_{i, j}$ is of rank k, i.e. when its k rows are linearly independent at some point.
Theorem. [Lagrange multipliers] Let D be an open subset of \mathbb{R}^{n} and $f, f_{1}, f_{2}, \ldots, f_{k}: D \rightarrow \mathbb{R}$ independent differentiable functions. Assume that a point a in D is an extremum of the function f within the set of points in D such that $f_{1}=f_{2}=\cdots=f_{n}=0$. Then there exist real numbers $\lambda_{1}, \ldots, \lambda_{k}$ (so-called Lagrange multipliers) such that a is a stationary point of the function $F=f+\lambda_{1} f_{1}+\cdots+\lambda_{k} f_{k}$, i.e., such that all partial derivatives of F at a are zero.

Definition. Let f be a real function defined on $[a, b]$ and let $a=x_{0} \leq x_{1} \leq$ $\cdots \leq x_{n}=b$ and $\xi_{k} \in\left[x_{k-1}, x_{k}\right]$. The sum $S=\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) f\left(\xi_{k}\right)$ is called a Darboux sum. If $I=\lim _{\delta \rightarrow 0} S$ exists (where $\delta=\max _{k}\left(x_{k}-x_{k-1}\right)$), we say that f is integrable and I its integral. Every continuous function is integrable on a finite interval.

Geometry

Triangle Geometry

Definition. The orthocenter of a triangle is the common point of its three altitudes.

Definition. The circumcenter of a triangle is the center of its circumscribed circle (i.e. circumcircle). It is the common point of the perpendicular bisectors of the sides of the triangle.
Definition. The incenter of a triangle is the center of its inscribed circle (i.e. incircle). It is the common point of the internal bisectors of its angles.

Definition. The centroid of a triangle (median point) is the common point of its medians.

Theorem. The orthocenter, circumcenter, incenter and centroid are well-defined (and unique) for every non-degenerate triangle.

Theorem. [Euler's line] The orthocenter H, centroid G, and circumcircle O of an arbitrary triangle lie on a line (Euler's line) and satisfy $\overrightarrow{H G}=2 \overrightarrow{G O}$.
Theorem. [The nine-point circle] The feet of the altitudes from A, B, C and the midpoints of $A B, B C, C A, A H, B H, C H$ lie on a circle (The nine-point circle).

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Theorem. [Feuerbach's theorem] The nine-point circle of a triangle is tangent to the incircle and all three excircles of the triangle.

Theorem. Given a triangle $\triangle A B C$, let $\triangle A B C^{\prime}, \triangle A B^{\prime} C$, and $\triangle A^{\prime} B C$ be equilateral triangles constructed outwards. Then $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect in one point, called Torricelli's point.

Definition. Let $A B C$ be a triangle, P a point, and X, Y, Z respectively the feet of the perpendiculars from P to $B C, A C, A B$. Triangle $X Y Z$ is called the pedal triangle of $\triangle A B C$ corresponding to point P.
Theorem. [Simson's line] The pedal triangle $X Y Z$ is degenerate, i.e., X, Y, Z are collinear, if and only if P lies on the circumcircle of $A B C$. Points X, Y, Z are in this case said to lie on Simson's line.

Theorem. [Carnot's theorem] The perpendiculars from X, Y, Z to $B C, C A, A B$ respectively are concurrent if and only if

$$
B X^{2}-X C^{2}+C Y^{2}-Y A^{2}+A Z^{2}-Z B^{2}=0
$$

Theorem. [Desargues's theorem] Let $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ be two triangles. The lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are concurrent or mutually parallel if and only if the points $A=B_{1} C_{2} \cap B_{2} C_{1}, B=C_{1} A_{2} \cap A_{1} C_{2}$, and $C=A_{1} B_{2} \cap A_{2} B_{1}$ are collinear.

Vectors in Geometry

Definition. For any two vectors \vec{a}, \vec{b} in space, we define the scalar product (also known as dot product) of \vec{a} and \vec{b} as $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \varphi$, and the vector product as $\vec{a} \times \vec{b}=\vec{p}$, where $\varphi=\angle(\vec{a}, \vec{b})$ and \vec{p} is the vector with $|\vec{p}|=|\vec{a}||\vec{b}||\sin \varphi|$ perpendicular to the plane determined by \vec{a} and \vec{b} such that the triple of vectors $\vec{a}, \vec{b}, \vec{p}$ is positively oriented (note that if \vec{a} and \vec{b} are collinear, then $\vec{a} \times \vec{b}=\overrightarrow{0}$). These products are both linear with respect to both factors. The scalar product is commutative, while the vector product is anticommutative, i.e. $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$. We also define the mixed vector product of three vectors $\vec{a}, \vec{b}, \vec{c}$ as $[\vec{a}, \vec{b}, \vec{c}]=(\vec{a} \times \vec{b}) \cdot \vec{c}$. Remark. Scalar product of vectors \vec{a} and \vec{b} is often denoted by $\langle\vec{a}, \vec{b}\rangle$.
Theorem. [Thales' theorem] Let lines $A A^{\prime}$ and $B B^{\prime}$ intersect in a point O, $A^{\prime} \neq O \neq B^{\prime}$. Then $A B \| A^{\prime} B^{\prime} \Leftrightarrow \frac{\overrightarrow{O A}}{\overrightarrow{O A^{\prime}}}=\frac{\overrightarrow{O B}}{\overrightarrow{O B^{\prime}}}$. (Here $\frac{\vec{a}}{\vec{b}}$ denotes the ratio of two nonzero collinear vectors).

Theorem. [Ceva's theorem] Let $A B C$ be a triangle and X, Y, Z be points on lines $B C, C A, A B$ respectively, distinct from A, B, C. Then the lines $A X, B Y, C Z$ are concurrent if and only if

$$
\frac{\overrightarrow{B X}}{\overrightarrow{X C}} \cdot \frac{\overrightarrow{C Y}}{\overrightarrow{Y A}} \cdot \frac{\overrightarrow{A Z}}{\overrightarrow{Z B}}=1 \text {, or equivalently, } \frac{\sin \measuredangle B A X}{\sin \measuredangle X A C} \frac{\sin \measuredangle C B Y}{\sin \measuredangle Y B A} \frac{\sin \measuredangle A C Z}{\sin \measuredangle Z C B}=1
$$

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu
(the last expression being called the trigonometric form of Ceva's theorem).
Theorem. [Menelaus's theorem] Using the notation introduced for Ceva's theorem, points X, Y, Z are collinear if and only if

$$
\frac{\overrightarrow{B X}}{\overrightarrow{X C}} \cdot \frac{\overrightarrow{C Y}}{\overrightarrow{Y A}} \cdot \frac{\overrightarrow{A Z}}{\overrightarrow{Z B}}=-1
$$

Theorem. [Stewart's theorem] If D is an arbitrary point on the line $B C$, then

$$
A D^{2}=\frac{\overrightarrow{D C}}{\overrightarrow{B C}} B D^{2}+\frac{\overrightarrow{B D}}{\overrightarrow{B C}} C D^{2}-\overrightarrow{B D} \cdot \overrightarrow{D C}
$$

Specifically, if D is the midpoint of $B C$, then $4 A D^{2}=2 A B^{2}+2 A C^{2}-B C^{2}$.

Barycenters

Definition. A mass point (A, m) is a point A which is assigned a mass $m>0$.
Definition. The mass center (barycenter) of the set of mass points $\left(A_{i}, m_{i}\right)$, $i=1,2, \ldots, n$, is the point T such that $\sum_{i} m_{i} \overrightarrow{T A_{i}}=0$.

Theorem. [Leibniz's theorem] Let T be the mass center of the set of mass points $\left\{\left(A_{i}, m_{i}\right) \mid i=1,2, \ldots, n\right\}$ of total mass $m=m_{1}+\cdots+m_{n}$, and let X be an arbitrary point. Then

$$
\sum_{i=1}^{n} m_{i} X A_{i}^{2}=\sum_{i=1}^{n} m_{i} T A_{i}^{2}+m X T^{2}
$$

Specifically, if T is the centroid of $\triangle A B C$ and X an arbitrary point, then

$$
A X^{2}+B X^{2}+C X^{2}=A T^{2}+B T^{2}+C T^{2}+3 X T^{2}
$$

Quadrilaterals

Theorem. A quadrilateral $A B C D$ is cyclic (i.e., there exists a circumcircle of $A B C D)$ if and only if $\angle A C B=\angle A D B$ and if and only if $\angle A D C+\angle A B C=$ 180°.

Theorem. [Ptolemy's theorem] A convex quadrilateral $A B C D$ is cyclic if and only if

$$
A C \cdot B D=A B \cdot C D+A D \cdot B C
$$

For an arbitrary quadrilateral $A B C D$ we have Ptolemy's inequality (see, Geometric Inequalities).

Theorem. [Casey's theorem] Let $k_{1}, k_{2}, k_{3}, k_{4}$ be four circles that all touch a given circle k. Let $t_{i j}$ be the length of a segment determined by an external common tangent of circles k_{i} and $k_{j}(i, j \in\{1,2,3,4\})$ if both k_{i} and k_{j} touch k internally, or both touch k externally. Otherwise, $t_{i j}$ is set to be the internal common tangent. Then one of the products $t_{12} t_{34}, t_{13} t_{24}$, and $t_{14} t_{23}$ is the sum of the other two.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Some of the circles $k_{1}, k_{2}, k_{3}, k_{4}$ may be degenerate, i.e. of 0 radius and thus reduced to being points. In particular, for three points A, B, C on a circle k and a circle k^{\prime} touching k at a point on the arc of $A C$ not containing B, we have $A C \cdot b=A B \cdot c+a \cdot B C$, where a, b, and c are the lengths of the tangent segments from points A, B, and C to k^{\prime}. Ptolemy's theorem is a special case of Casey's theorem when all four circles are degenerate.

Theorem. A convex quadrilateral $A B C D$ is tangent (i.e., there exists an incircle of $A B C D$) if and only if

$$
A B+C D=B C+D A
$$

Theorem. For arbitrary points A, B, C, D in space, $A C \perp B D$ if and only if

$$
A B^{2}+C D^{2}=B C^{2}+D A^{2}
$$

Theorem. [Newton's theorem] Let $A B C D$ be a quadrilateral, $A D \cap B C=E$, and $A B \cap D C=F$ (such points A, B, C, D, E, F form a complete quadrilateral). Then the midpoints of $A C, B D$, and $E F$ are collinear. If $A B C D$ is tangent, then the incenter also lies on this line.
Theorem. [Brocard's theorem] Let $A B C D$ be a quadrilateral inscribed in a circle with center O, and let $P=A B \cap C D, Q=A D \cap B C, R=A C \cap B D$. Then O is the orthocenter of $\triangle P Q R$.

Circle Geometry

Theorem. [Pascal's theorem] If $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ are distinct points on a conic γ (e.g., circle), then points $X_{1}=A_{2} B_{3} \cap A_{3} B_{2}, X_{2}=A_{1} B_{3} \cap A_{3} B_{1}$, and $X_{3}=A_{1} B_{2} \cap A_{2} B_{1}$ are collinear. The special result when γ consists of two lines is called Pappus's theorem.

Theorem. [Brianchon's theorem] Let $A B C D E F$ be an arbitrary convex hexagon circumscribed about a conic (e.g., circle). Then $A D, B E$ and $C F$ meet in a point.
Theorem. [The butterfly theorem] Let $A B$ be a segment of circle k and C its midpoint. Let p and q be two different lines through C that, respectively, intersect k on one side of $A B$ in P and Q and on the other in P^{\prime} and Q^{\prime}. Let E and F respectively be the intersections of $P Q^{\prime}$ and $P^{\prime} Q$ with $A B$. Then it follows that $C E=C F$.

Definition. The power of a point X with respect to a circle $k(O, r)$ is defined by $\mathcal{P}(X)=O X^{2}-r^{2}$. For an arbitrary line l through X that intersects k at A and $B(A=B$ when l is a tangent $)$, it follows that $\mathcal{P}(X)=\overrightarrow{X A} \cdot \overrightarrow{X B}$.

Definition. The radical axis of two circles is the locus of points that have equal powers with respect to both circles. The radical axis of circles $k_{1}\left(O_{1}, r_{1}\right)$ and $k_{2}\left(O_{2}, r_{2}\right)$ is a line perpendicular to $O_{1} O_{2}$. The radical axes of three distinct circles are concurrent or mutually parallel. If concurrent, the intersection of the three axes is called the radical center.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Definition. The pole of a line $l \not \supset O$ with respect to a circle $k(O, r)$ is a point A on the other side of l from O such that $O A \perp l$ and $d(O, l) \cdot O A=r^{2}$. In particular, if l intersects k in two points, its pole will be the intersection of the tangents to k at these two points.
Definition. The polar of the point A from the previous definition is the line l. In particular, if A is a point outside k and $A M, A N$ are tangents to $k(M, N \in k)$, then $M N$ is the polar of A.
Poles and polares are generally defined in a similar way with respect to arbitrary non-degenerate conics.
Theorem. If A belongs to a polar of B, then B belongs to a polar of A.

Inversion

Definition. An inversion of the plane π around the circle $k(O, r)$ (which belongs to π), is a transformation of the set $\pi \backslash\{O\}$ onto itself such that every point P is transformed into a point P^{\prime} on $\left(O P\right.$ such that $O P \cdot O P^{\prime}=r^{2}$. In the following statements we implicitly assume exclusion of O.

Theorem. The fixed points of the inversion are on the circle k. The inside of k is transformed into the outside and vice versa.

Theorem. If A, B transform into A^{\prime}, B^{\prime} after an inversion, then $\angle O A B=$ $\angle O B^{\prime} A^{\prime}$, and also $A B B^{\prime} A^{\prime}$ is cyclic and perpendicular to k. A circle perpendicular to k transforms into itself. Inversion preserves angles between continuous curves (which includes lines and circles).
Theorem. An inversion transforms lines not containing O into circles containing O, lines containing O into themselves, circles not containing O into circles not containing O, circles containing O into lines not containing O.

Geometric Inequalities

Theorem. [The triangle inequality] For any three points A, B, C in a plane $A B+B C \geq A C$. Equality occurs when A, B, C are collinear and $\mathcal{B}(A, B, C)$.
Theorem. [Ptolemy's inequality] For any four points A, B, C, D,

$$
A C \cdot B D \leq A B \cdot C D+A D \cdot B C
$$

Theorem. [The parallelogram inequality] For any four points A, B, C, D,

$$
A B^{2}+B C^{2}+C D^{2}+D A^{2} \geq A C^{2}+B D^{2}
$$

Equality occurs if and only if $A B C D$ is a parallelogram.
Theorem. For a given triangle $\triangle A B C$ the point X for which $A X+B X+C X$ is minimal is Toricelli's point when all angles of $\triangle A B C$ are less than or equal to 120°, and is the vertex of the obtuse angle otherwise. The point X_{2} for which $A X_{2}^{2}+B X_{2}^{2}+C X_{2}^{2}$ is minimal is the centroid (see Leibniz's theorem).

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Theorem. [The Erdős-Mordell inequality] Let P be a point in the interior of $\triangle A B C$ and X, Y, Z projections of P onto $B C, A C, A B$, respectively. Then

$$
P A+P B+P C \geq 2(P X+P Y+P Z)
$$

Equality holds if and only if $\triangle A B C$ is equilateral and P is its center.

Trigonometry

Definition. The trigonometric circle is the unit circle centered at the origin O of a coordinate plane. Let A be the point $(1,0)$ and $P(x, y)$ be a point on the trigonometric circle such that $\measuredangle A O P=\alpha$. We define $\sin \alpha=y, \cos \alpha=x$, $\tan \alpha=y / x$, and $\cot \alpha=x / y$.
Theorem. The functions sin and cos are periodic with period 2π. The functions \tan and cot are periodic with period π. The following simple identities hold: $\sin ^{2} x+\cos ^{2} x=1, \sin 0=\sin \pi=0, \sin (-x)=-\sin x, \cos (-x)=\cos x$, $\sin (\pi / 2)=1, \sin (\pi / 4)=1 / \sqrt{2}, \sin (\pi / 6)=1 / 2, \cos x=\sin (\pi / 2-x)$. From these identities other identities can be easily derived.
Theorem. Additive formulas for trigonometric functions:

$$
\begin{array}{ll}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta, & \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}, \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta, & \cot (\alpha \pm \beta)=\frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \pm \cot \beta} .
\end{array}
$$

Theorem. Formulas for trigonometric functions of $2 x$ and $3 x$:

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x, & \sin 3 x & =3 \sin x-4 \sin ^{3} x, \\
\cos 2 x & =2 \cos ^{2} x-1, & \cos 3 x & =4 \cos ^{3} x-3 \cos x, \\
\tan 2 x & =\frac{2 \tan x}{1-\tan ^{2} x}, & \tan 3 x & =\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x} .
\end{aligned}
$$

Theorem. For any $x \in \mathbb{R}, \sin x=\frac{2 t}{1+t^{2}}$ and $\cos x=\frac{1-t^{2}}{1+t^{2}}$, where $t=\tan \frac{x}{2}$.
Theorem. Transformations from product to sum:

$$
\begin{aligned}
2 \cos \alpha \cos \beta & =\cos (\alpha+\beta)+\cos (\alpha-\beta), \\
2 \sin \alpha \cos \beta & =\sin (\alpha+\beta)+\sin (\alpha-\beta), \\
2 \sin \alpha \sin \beta & =\cos (\alpha-\beta)-\cos (\alpha+\beta)
\end{aligned}
$$

Theorem. The angles α, β, γ of a triangle satisfy

$$
\begin{aligned}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma & =1 \\
\tan \alpha+\tan \beta+\tan \gamma & =\tan \alpha \tan \beta \tan \gamma .
\end{aligned}
$$

Theorem. [De Moivre's formula] If $i^{2}=-1$, then

$$
(\cos x+i \sin x)^{n}=\cos n x+i \sin n x
$$

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Formulas in Geometry

Theorem. [Heron's formula] The area of a triangle $A B C$ with sides a, b, c and semiperimeter s is given by

$$
S=\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{4} \sqrt{2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4}}
$$

Theorem. [The law of sines] The sides a, b, c and angles α, β, γ of a triangle $A B C$ satisfy

$$
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}=2 R,
$$

where R is the circumradius of $\triangle A B C$.
Theorem. [The law of cosines] The sides and angles of $\triangle A B C$ satisfy

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

Theorem. The circumradius R and inradius r of a triangle $A B C$ satisfy $R=\frac{a b c}{4 S}$ and $r=\frac{2 S}{a+b+c}=R(\cos \alpha+\cos \beta+\cos \gamma-1)$. If x, y, z denote the distances of the circumcenter in an acute triangle to the sides, then $x+y+z=R+r$.

Theorem. [Euler's formula] If O and I are the circumcenter and incenter of $\triangle A B C$, then $O I^{2}=R(R-2 r)$, where R and r are respectively the circumradius and the inradius of $\triangle A B C$. Consequently, $R \geq 2 r$.
Theorem. The area S of a quadrilateral $A B C D$ with sides a, b, c, d, semiperimeter p, and angles α, γ at vertices A, C respectively is given by

$$
S=\sqrt{(p-a)(p-b)(p-c)(p-d)-a b c d \cos ^{2} \frac{\alpha+\gamma}{2}}
$$

If $A B C D$ is a cyclic quadrilateral, the above formula reduces to

$$
S=\sqrt{(p-a)(p-b)(p-c)(p-d)} .
$$

Theorem. [Euler's theorem for pedal triangles] Let X, Y, Z be the feet of the perpendiculars from a point P to the sides of a triangle $A B C$. Let O denote the circumcenter and R the circumradius of $\triangle A B C$. Then

$$
S_{X Y Z}=\frac{1}{4}\left|1-\frac{O P^{2}}{R^{2}}\right| S_{A B C}
$$

Moreover, $S_{X Y Z}=0$ if and only if P lies on the circumcircle of $\triangle A B C$ (see Simson's line).
Theorem. If $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right), \vec{c}=\left(c_{1}, c_{2}, c_{3}\right)$ are three vectors in coordinate space, then

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}, \quad \vec{a} \times \vec{b}=\left(a_{1} b_{2}-a_{2} b_{1}, a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}\right)
$$

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

$$
[\vec{a}, \vec{b}, \vec{c}]=\left\|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right\|
$$

Theorem. The area of a triangle $A B C$ and the volume of a tetrahedron $A B C D$ are equal to $|\overrightarrow{A B} \times \overrightarrow{A C}|$ and $|[\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}]|$, respectively.
Theorem. [Cavalieri's principle] If the sections of two solids by the same plane always have equal area, then the volumes of the two solids are equal.

Number Theory

Divisibility and Congruences

Definition. The greatest common divisor $(a, b)=\operatorname{gcd}(a, b)$ of $a, b \in \mathbb{N}$ is the largest positive integer that divides both a and b. Positive integers a and b are coprime or relatively prime if $(a, b)=1$. The least common multiple $[a, b]=\operatorname{lcm}(a, b)$ of $a, b \in \mathbb{N}$ is the smallest positive integer that is divisible by both a and b. It holds that $a, b=a b$. The above concepts are easily generalized to more than two numbers; i.e., we also define $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$.
Theorem. [Euclid's algorithm] Since $(a, b)=(|a-b|, a)=(|a-b|, b)$ it follows that starting from positive integers a and b one eventually obtains (a, b) by repeatedly replacing a and b with $|a-b|$ and $\min \{a, b\}$ until the two numbers are equal. The algorithm can be generalized to more than two numbers.
Theorem. [Corollary to Euclid's algorithm] For each $a, b \in \mathbb{N}$ there exist $x, y \in \mathbb{Z}$ such that $a x+b y=(a, b)$. The number (a, b) is the smallest positive number for which such x and y can be found.

Theorem. [Second corollary to Euclid's algorithm] For $a, m, n \in \mathbb{N}$ and $a>1$ it follows that $\left(a^{m}-1, a^{n}-1\right)=a^{(m, n)}-1$.
Theorem. [Fundamental theorem of arithmetic] Every positive integer can be uniquely represented as a product of primes, up to their order.

Theorem. The fundamental theorem of arithmetic also holds in some other rings, such as $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}, \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\omega]$ (where ω is a complex third root of 1). In these cases, the factorization into primes is unique up to the order and divisors of 1 .

Definition. Integers a, b are congruent modulo $n \in \mathbb{N}$ if $n \mid a-b$. We then write $a \equiv b(\bmod n)$.
Theorem. [Chinese remainder theorem] If $m_{1}, m_{2}, \ldots, m_{k}$ are positive integers pairwise relatively prime and $a_{1}, \ldots, a_{k}, c_{1}, \ldots, c_{k}$ are integers such that $\left(a_{i}, m_{i}\right)=1(i=1, \ldots, n)$, then the system of congruences

$$
a_{i} x \equiv c_{i}\left(\bmod m_{i}\right), \quad i=1,2, \ldots, n,
$$

has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Exponential Congruences

Theorem. [Wilson's theorem] If p is a prime, then $p \mid(p-1)!+1$.
Theorem. [Fermat's (little) theorem] Let p be a prime number and a be an integer with $(a, p)=1$. Then $a^{p-1} \equiv 1(\bmod p)$. This theorem is a special case of Euler's theorem.

Definition. Euler's function $\varphi(n)$ is defined for $n \in \mathbb{N}$ as the number of positive integers less than n and coprime to n. It holds that

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right),
$$

where $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ is the factorization of n into primes.
Theorem. [Euler's theorem] Let n be a natural number and a be an integer with $(a, n)=1$. Then $a^{\varphi(n)} \equiv 1(\bmod n)$.
Theorem. [Existence of primitive roots] Let p be a prime. There exists $g \in\{1,2, \ldots, p-1\}$ (called a primitive root modulo p) such that the set $\left\{1, g, g^{2}, \ldots, g^{p-2}\right\}$ is equal to $\{1,2, \ldots, p-1\}$ modulo p.

Definition. Let p be a prime and α be a nonnegative integer. We say that p^{α} is the exact power of p that divides an integer a (and α the exact exponent) if $p^{\alpha} \mid a$ and $p^{\alpha+1} \nmid a$.

Theorem. Let a, n be positive integers and p be an odd prime. If $p^{\alpha}(\alpha \in \mathbb{N})$ is the exact power of p that divides $a-1$, then for any integer $\beta \geq 0, p^{\alpha+\beta} \mid a^{n}-1$ if and only if $p^{\beta} \mid n$.

A similar statement holds for $p=2$. If $2^{\alpha}(\alpha \in \mathbb{N})$ is the exact power of 2 that divides $a^{2}-1$, then for any integer $\beta \geq 0,2^{\alpha+\beta} \mid a^{n}-1$ if and only if $2^{\beta+1} \mid n$.

Quadratic Diophantine Equations

Theorem. The solutions of $a^{2}+b^{2}=c^{2}$ in integers are given by $a=t\left(m^{2}-n^{2}\right)$, $b=2 t m n, c=t\left(m^{2}+n^{2}\right)$ (provided that b is even), where $t, m, n \in \mathbb{Z}$. The triples (a, b, c) are called Pythagorean (or primitive Pythagorean if $\operatorname{gcd}(a, b, c)=$ 1).

Definition. Given $D \in \mathbb{N}$ that is not a perfect square, a Pell's equation is an equation of the form $x^{2}-D y^{2}=1$, where $x, y \in \mathbb{Z}$.

Theorem. If $\left(x_{0}, y_{0}\right)$ is the least (nontrivial) solution in \mathbb{N} of the Pell's equation $x^{2}-D y^{2}=1$, then all the integer solutions (x, y) are given by $x+y \sqrt{D}=$ $\pm\left(x_{0}+y_{0} \sqrt{D}\right)^{n}$, where $n \in \mathbb{Z}$.
Definition. An integer a is a quadratic residue modulo a prime p if there exists $x \in \mathbb{Z}$ such that $x^{2} \equiv a(\bmod p)$. Otherwise, a is a quadratic nonresidue modulo p.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Definition. Legendre's symbol for an integer a and a prime p is defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cl}
1 & \text { if } a \text { is a quadratic residue } \bmod p \text { and } p \nmid a ; \\
0 & \text { if } p \mid a ; \\
-1 & \text { otherwise }
\end{array}\right.
$$

Clearly $\left(\frac{a}{p}\right)=\left(\frac{a+p}{p}\right)$ and $\left(\frac{a^{2}}{p}\right)=1$ if $p \nmid a$. Legendre's symbol is multiplicative, i.e., $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$.
Theorem. [Euler's criterion] For each odd prime p and integer a not divisible by $p, a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$.
Theorem. For a prime $p>3,\left(\frac{-1}{p}\right),\left(\frac{2}{p}\right)$ and $\left(\frac{-3}{p}\right)$ are equal to 1 if and only if $p \equiv 1(\bmod 4), p \equiv \pm 1(\bmod 8)$ and $p \equiv 1(\bmod 6)$, respectively.

Theorem. [Gauss's Reciprocity law] For any two distinct odd primes p and q,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

Definition. Jacobi's symbol for an integer a and an odd positive integer b is defined as

$$
\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{\alpha_{k}}
$$

where $b=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ is the factorization of b into primes.
Theorem. If $\left(\frac{a}{b}\right)=-1$, then a is a quadratic nonresidue modulo b, but the converse is false. All the above identities for Legendre symbols except Euler's criterion remain true for Jacobi symbols.

Farey Sequences

Definition. For any positive integer n, the Farey sequence F_{n} is the sequence of rational numbers a / b with $0 \leq a \leq b \leq n$ and $(a, b)=1$ arranged in increasing order. For instance, $F_{3}=\left\{\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}\right\}$.
Theorem. If $p_{1} / q_{1}, p_{2} / q_{2}$, and p_{3} / q_{3} are three successive terms in a Farey sequence, then

$$
p_{2} q_{1}-p_{1} q_{2}=1 \quad \text { and } \quad \frac{p_{1}+p_{3}}{q_{1}+q_{3}}=\frac{p_{2}}{q_{2}}
$$

Combinatorics

Counting of Objects

Many combinatorial problems involving the counting of objects satisfying a given set of properties can be properly reduced to an application of one of the following concepts.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Definition. A variation of order n over k is a 1 to 1 mapping of $\{1,2, \ldots, k\}$ into $\{1,2, \ldots, n\}$. For a given n and k, where $n \geq k$, the number of different variations is $V_{n}^{k}=\frac{n!}{(n-k)!}$.

Definition. A variation with repetition of order n over k is an arbitrary mapping of $\{1,2, \ldots, k\}$ into $\{1,2, \ldots, n\}$. For a given n and k the number of different variations with repetition is $\bar{V}_{n}^{k}=k^{n}$.
Definition. A permutation of order n is a bijection of $\{1,2, \ldots, n\}$ into itself (a special case of variation for $k=n$). For a given n the number of different permutations is $P_{n}=n!$.

Definition. A combination of order n over k is a k-element subset of $\{1,2, \ldots, n\}$. For a given n and k the number of different combinations is $C_{n}^{k}=\binom{n}{k}$.
Definition. A permutation with repetition of order n is a bijection of $\{1,2, \ldots, n\}$ into a multiset of n elements. A multiset is defined to be a set in which certain elements are deemed mutually indistinguishable (for example, as in $\{1,1,2,3\}$).

If $\{1,2 \ldots, s\}$ denotes a set of different elements in the multiset and the element i appears α_{i} times in the multiset, then number of different permutations with repetition is $P_{n, \alpha_{1}, \ldots, \alpha_{s}}=\frac{n!}{\alpha_{1}!\cdot \alpha_{2}!\cdots \alpha_{s}!}$. A combination is a special case of permutation with repetition for a multiset with two different elements.

Theorem. [The pigeonhole principle] If a set of $n k+1$ different elements is partitioned into n mutually disjoint subsets, then at least one subset will contain at least $k+1$ elements.

Theorem. [The inclusion-exclusion principle] Let $S_{1}, S_{2}, \ldots, S_{n}$ be a family of subsets of the set S. The number of elements of S contained in none of the subsets is given by the formula

$$
\left|S \backslash\left(S_{1} \cup \cdots \cup S_{n}\right)\right|=|S|-\sum_{k=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}(-1)^{k}\left|S_{i_{1}} \cap \cdots \cap S_{i_{k}}\right|
$$

Graph Theory

Definition. A graph $G=(V, E)$ is a set of objects, i.e., vertices, V paired with the multiset E of some pairs of elements of V, i.e., edges. When $(x, y) \in E$, for $x, y \in V$, the vertices x and y are said to be connected by an edge; i.e., the vertices are the endpoints of the edge.

A graph for which the multiset E reduces to a proper set (i.e., the vertices are connected by at most one edge) and for which no vertex is connected to itself is called a proper graph.

A finite graph is one in which $|E|$ and $|V|$ are finite.
Definition. An oriented graph is one in which the pairs in E are ordered.
Definition. A proper graph K_{n} containing n vertices and in which each pair of vertices is connected is called a complete graph.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Definition. A k-partite graph (bipartite for $k=2$) $K_{i_{1}, i_{2}, \ldots, i_{k}}$ is a graph whose set of vertices V can be partitioned into k non-empty disjoint subsets of cardinalities $i_{1}, i_{2}, \ldots, i_{k}$ such that each vertex x in a subset W of V is connected only with the vertices not in W.
Definition. The degree $d(x)$ of a vertex x is the number of times x is the endpoint of an edge (thus, self-connecting edges are counted twice). An isolated vertex is one with the degree 0 .
Theorem. For a graph $G=(V, E)$ the following identity holds:

$$
\sum_{x \in V} d(x)=2|E| .
$$

As a consequence, the number of vertices of odd degree is even.
Definition. A trajectory (path) of a graph is a finite sequence of vertices, each connected to the previous one. The length of a trajectory is the number of edges through which it passes. A circuit is a path that ends in the starting vertex. A cycle is a circuit in which no vertex appears more than once (except the initial/final vertex).

A graph is connected if there exists a trajectory between any two vertices.
Definition. A subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of a graph $G=(V, E)$ is a graph such that $V^{\prime} \subseteq V$ and E^{\prime} contains exactly the edges of E connecting points in V^{\prime}. A connected component of a graph is a connected subgraph such that no vertex of the component is connected with any vertex outside of the component.

Definition. A tree is a connected graph that contains no cycles.
Theorem. A tree with n vertices has exactly $n-1$ edges and at least two vertices of degree 1 .

Definition. An Euler path is a path in which each edge appears exactly once. Likewise, an Euler circuit is an Euler path that is also a circuit.

Theorem. The following conditions are necessary and sufficient for a finite connected graph G to have an Euler path:

- If each vertex has even degree, then the graph contains an Euler circuit.
- If all vertices except two have even degree, then the graph contains an Euler path that is not a circuit (it starts and ends in the two odd vertices).

Definition. A Hamilton circuit is a circuit that contains each vertex of G exactly once (trivially, it is also a cycle).

A simple rule to determine whether a graph contains a Hamilton circuit has not yet been discovered.

Theorem. Let G be a graph with n vertices. If the sum of the degrees of any two nonadjacent vertices in G is greater than n, then G has a Hamiltonian circuit.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

Theorem. [Ramsey's theorem] Let $r \geq 1$ and $q_{1}, q_{2}, \ldots, q_{s} \geq r$. There exists a minimal positive integer $N\left(q_{1}, q_{2}, \ldots, q_{s} ; r\right)$ such that for $n \geq N$, if all subgraphs K_{r} of K_{n} are partitioned into s different sets, labeled $A_{1}, A_{2} \ldots, A_{s}$, then for some i there exists a complete subgraph $K_{q_{i}}$ whose subgraphs K_{r} all belong to A_{i}. For $r=2$ this corresponds to coloring the edges of K_{n} with s different colors and looking for i monochromatically colored subgraphs $K_{q_{i}}$.
Theorem. $N(p, q ; r) \leq N(N(p-1, q ; r), N(p, q-1 ; r) ; r-1)+1$, and in particular, $N(p, q ; 2) \leq N(p-1, q ; 2)+N(p, q-1 ; 2)$.

The following values of N are known: $N(p, q ; 1)=p+q-1, N(2, p ; 2)=p$, $N(3,3 ; 2)=6, N(3,4 ; 2)=9, N(3,5 ; 2)=14, N(3,6 ; 2)=18, N(3,7 ; 2)=23$, $N(3,8 ; 2)=28, N(3,9 ; 2)=36, N(4,4 ; 2)=18, N(4,5 ; 2)=25$.

Theorem. [Turán's theorem] If a simple graph on $n=t(p-1)+r$ vertices has more than $f(n, p)$ edges, where $f(n, p)=\frac{(p-2) n^{2}-r(p-1-r)}{2(p-1)}$, then it contains K_{p} as a subgraph. The graph containing $f(n, p)$ vertices that does not contain K_{p} is the complete multipartite graph with r subsets of size $t+1$ and $p-1-r$ subsets of size t.

Definition. A planar graph is one that can be embedded in a plane such that its vertices are represented by points and its edges by lines (not necessarily straight) connecting the vertices such that the edges do not intersect each other.

Theorem. A planar graph with n vertices has at most $3 n-6$ edges.
Theorem. [Kuratowski's theorem] Graphs K_{5} and $K_{3,3}$ are not planar. Every nonplanar graph contains a subgraph which can be obtained from one of these two graphs by a subdivison of its edges.

Theorem. [Euler's formula] For a given convex polyhedron let E be the number of its edges, F the number of faces, and V the number of vertices. Then $E+2=$ $F+V$. The same formula holds for a planar graph (F is in this case equal to the number of planar regions).

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

